
Control of a mechatronic system

Computer-based Exercises for ME-326

Fall 2024

Introduction

The objective of these exercises is to illustrate different aspects of controller design on a laboratory setup
using the Python Control Systems Library. The experimental setup under consideration is a rotary flexible
joint produced by Quanser to demonstrate real-world control challenges encountered in some industrial
large-gear robotic equipment. Five computer exercise modules are planned. In the first module a linearised
model of the system is used to study the performance of the closed-loop system with a proportional
controller. Some PID and cascade controllers are designed and validated in simulation during the second
module. The loop shaping method is used to design a PID and a lead-lag compensator for the system in
the third module. The state and output feedback controllers are designed and tested in simulation in the
fourth module. The last module concerns the design of a digital RST controller for the system. The work
is done by the groups of three students.

The completed version of Jupyter notebook should be submitted in moodle by the respective due dates
of the modules. The notebooks will be evaluated and counted for 10 points in the final grade.

Important Note

Only the comments in markdown blocks and outputs of the cell will be considered for grading. Any
comments inside the code blocks or variable which are not printed to output will be ignored. Use
View > Render Notebook with Voilà menu to preview the rendered file which will be graded.

System Description

The system consists of a base unit and a rotatory unit. The base unit consists of a DC motor that drives
a small pinion gear through an internal gearbox. The pinion gear is fixed to a larger middle gear that
rotates on the load shaft. The chassis of the rotatory unit is attached to the load gear of the gearbox and
can rotate freely. The chassis of the rotatory unit is connected to a flexible link with some small weights
attached to the link. (see Figure 1)

Two different states are considered:

• The rotation angle of the load shaft and the chassis of the motor: θ(t)

• The deflection angle of the flexible link: α(t)

In the following, we are interested in the angle between the link and the base unit: θ(t) +α(t). Hence,
the output of the system is taken to be from a speed encoder y(t) = θ(t) + α(t). The input of the system
u(t) is the DC voltage applied to the DC motor.

Modelling

The objective of this section is to find the transfer function between the system’s output y and the input
u. A schematic diagram of the system is shown in Figure 2.
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Figure 1: System under consideration: DC motor with a rotary flexible link
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Figure 2: Schematic diagram of the whole system

First, the dynamic equations of the electrical and mechanical part of the DC motor are obtained. It
is supposed that the motor’s stator consists of permanent magnets that provide a constant magnetic field
and the armature inductance can be neglected. Using Kirchhoff’s voltage law, the following equation can
be written for the electrical component of the motor:

Kau(t) = Rmim(t) + Eemf (t) (1)

where the electromotive force induced voltage is equal to Eemf (t) = Kmθ̇m(t). From the above equation,
the armature current is obtained as:

im(t) =
Kau(t)−Kmθ̇m(t)

Rm
(2)

By applying Newton’s law to the motor shaft we get:

Jmotθ̈m(t) +
TL(t)

KG
= Tm(t) (3)

where Jmot is the motor inertia, Tm(t) = Kmim(t) the motor torque and TL(t)/KG the load torque seen
through the gear (considering no loss in the gear).

The flexible link is attached from the middle to the load gear of the DC motor. At a given α, the link
is deformed and stores some potential energy which is dependent on the stiffness of the link (see Figure 3).
This potential energy can be given as:

V (t) =
1

2
Ksα

2(t) (4)

where Ks represents the equivalent stiffness of the flexible link.
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Figure 3: Schematic diagram of the rotatory flexible link

The kinetic energy of the flexible arm can be given by:

T (t) =
1

2
Jmodθ

2(t) +
1

2
Jnet

(
θ̇(t) + α̇(t)

)2
(5)

where Jnet is the total moment of inertia of the flexible link and the attached weights on it. Assuming
that the weights are symmetrically attached around the axis of rotation at a distance lw:

Jnet =
1

12
mll

2
l + 2mwl

2
w (6)

where, ml and ll are the mass and the length of the flexible link respectively, and mw is the mass of the
attached weight.

The dynamics of the flexible arm can then be obtained using the Euler-Lagrange equation:

∂2L

∂t∂q̇i
− ∂L

∂qi
= Qi (7)

where, qi are the generalised coordinate and Qi are the generalised non-conservative force. Furthermore,
the Lagrangian L(t) is given as T (t)− V (t).

For the flexible arm, take

q =

[
θ
α

]
& Q =

[
TL − bmodθ̇

−blα̇

]
Solving the Euler-Lagrange equation gives

Jmodθ̈(t) + Jnet(θ̈(t) + α̈(t)) + bmodθ̇(t) = TL(t) (8)

Jnetθ̈(t) + Jnetα̈(t) + blα̇(t) +Ksα(t) = 0 (9)

Using the fact that θm = KGθ, (3) can transformed using the Laplace transform:

K2
GJmots

2θ(s) + TL(s) = KmKGim(s) (10)

and we replace

im(s) =
Kau(s)−KmKGsθ(s)

Rm

which leads to

TL(s) =
KmKG

Rm
(Kau(s)−KmKGsθ(s))−K2

GJmots
2θ(s) (11)
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Using the Laplace transform on (9) gives:

Jnets
2θ(s) + Jnets

2α(s) + blsα(s) +Ksα(s) = 0 =⇒ α(s) = − Jnets
2

Jnets2 + bls+Ks
θ(s) (12)

Using the Laplace transform on (8) gives:

Jmods
2θ(s) + Jnets

2(θ(s) + α(s)) + bmodsθ(s) = TL(s) (13)

and replacing α(s), (
Jmods

2 + bmods+ Jnets
2 bls+Ks

Jnets2 + bls+Ks

)
θ(s) = TL(s) (14)

Using (11) replace TL(s) to obtain:(
Jmods

2 + bmods+K2
GJmots

2 + Jnets
2 bls+Ks

Jnets2 + bls+Ks
+KmKGs

KmKG

Rm

)
θ(s) =

KmKGKa

Rm
u(s)

(15)
Let Jm = Jmod +K2

GJmot, and simplify:(
(Jnets

2 + bls+Ks)(RmJms2 +Rmbmods+K2
mK2

Gs) +RmJnet(bls+Ks)s
2
)
θ(s)

= (Jnets
2 + bls+Ks)KmKGKau(s) (16)

Finally we obtain:

Gθ(s) =
(Jnets

2 + bls+Ks)KmKGKa

(Jnets2 + bls+Ks)(RmJms2 +Rmbmods+K2
mK2

Gs) +RmJnet(bls+Ks)s2
(17)

Gα(s) =
−(Jnets

2)KmKGKa

(Jnets2 + bls+Ks)(RmJms2 +Rmbmods+K2
mK2

Gs) +RmJnet(bls+Ks)s2
(18)

G(s) =
(bls+Ks)KmKGKa

(Jnets2 + bls+Ks)(RmJms2 +Rmbmods+K2
mK2

Gs) +RmJnet(bls+Ks)s2
(19)

Numerical values

Gain of power amplifier Ka 1.0 -
Motor resistance Rm 2.2 Ω
Torque constant Km 0.009 87 Nm/A
Gearbox ratio KG 60.0 -
Motor Inertia Jmot 3.87× 10−7 kgm2

Inertia of rotatory chassis Jmod 3.922× 10−4 kgm2

Viscous damping bmod 0.005 Nms/rad
Stiffness of flexible link Ks 0.5 Nm/rad
Damping of flexible link bl 0.01 Nms/rad
Mass of flexible link ml 0.1 kg
Length of flexible link ll 0.3 m
Mass of attached weights mw 0.05 kg
Length of attached weights lw 0.1 m

The transfer function G(s) is to be defined in Python. In all modules of the computer exercises, the
model G(s) will be used as the plant model which is being controlled.
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Steps for state-space model

First define the states of the system as x =
[
θ̇ θ α̇ α

]T
.

Using the fact that θm = KGθ, we can find TL from eqn. (2) and (3) as follows:

TL = −K2
GJmotθ̈ +KGKm

(
Kau−KmKGθ̇

Rm

)

Then, replace TL in eqn. (8) to find one of the state equations. The other state equation is eqn. (9).
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